A Concise Route to Dihydrobenzo[b]furans: Formal Total Synthesis of (þ)-Lithospermic Acid

Joshua Fischer,[†] G. Paul Savage,[‡] and Mark J. Coster*^{,†}

Eskitis Institute for Cell And Molecular Therapies, Griffith University, Nathan 4111 Queensland, Australia and CSIRO Materials Science and Engineering, Private Bag 10, Clayton 3169 Victoria, Australia

m.coster@griffith.edu.au

Received April 28, 2011

A sequence of Sonogashira coupling, Pd(II)-catalyzed carbonylative annulation, and benzofuran reduction (Mg, MeOH, NH4Cl) provides a convergent and modular synthetic route to trans-2-aryl-2,3-dihydrobenzo[b]furan-3-carboxylates, which are a structural feature of numerous biologically active natural products. This versatile strategy was applied to the formal total synthesis of the anti-HIV natural product $(+)$ lithospermic acid.

2-Aryl-2,3-dihydrobenzo[b]furans are a common structural feature of numerous natural products (e.g., $1-2$, Figure 1) exhibiting bioactivities, such as antimitotic,¹ antiangiogenic, α^2 antioxidant, α^3 antimicrobial, α^4 and neuritogenic.⁵ Most natural products with this skeleton are 2,3*trans* configured, 6 with many that were initially assigned as cis-configured having their relative stereochemistry revised.⁷

Considerable effort has been devoted to the synthesis of 2-aryl-2,3-dihydrobenzo[b]furans. Strategies employed for

- ‡CSIRO Materials Science and Engineering.
- (1) Pieters, L.; Van Dyck, S.; Gao, M.; Bai, R.; Hamel, E.; Vlietinck, A.; Lemière, G. J. Med. Chem. 1999, 42, 5475-81.
- (2) Apers, S.; Vlietinck, A; Pieters, L Phytochem. Rev. 2003, 2, 201– 217
- (3) Kikuzaki, H.; Kayano, S.; Fukutsuka, N.; Aoki, A.; Kasamatsu, K.; Yamasaki, Y.; Mitani, T.; Nakatani, N. J. Agric. Food Chem. 2004, 52, 344–349.
- (4) Pauletti, P. M.; Araujo, A. R.; Young, M. C. M.; Giesbrecht, A. M.; Bolzani, V. S. Phytochemistry 2000, 55, 597–601.
- (5) Shin, J. S.; Kim, Y. M.; Hong, S. S.; Kang, H. S.; Yang, Y. J.; Lee, D. K.; Hwang, B. Y.; Ro, J. S.; Lee, M. K. Arch. Pharm. Res. 2005, 28, 1337–1340.
- (6) Sefkow, M. Synthesis 2003, 2595–2625.
- (7) Li, S.; Iliefski, T.; Lundquist, K; Wallis., A. F. A. Phytochemistry 1997, 46, 929–934.

10.1021/ol201130h © 2011 American Chemical Society Published on Web 06/07/2011

ORGANIC **LETTERS**

2011 Vol. 13, No. 13 3376–3379

Figure 1. Representative dihydrobenzo[b]furan natural products.

the diastereoselective synthesis of these systems⁸ include the biomimetic oxidation of phenylpropenes, the Schmidt rearrangement, the rearrangement of chalcone epoxides, and acid catalyzed $[3 + 2]$ cycloadditions of phenylpropenes with quinones.⁶ Enantioselective syntheses have also been achieved via Rh(II)-catalyzed intramolecular C-H insertions,^{9,10} with this approach affording a predominance of the *cis*-2,3-dihydrobenzo[b]furan.

Griffith University.

⁽⁸⁾ Graening, T.; Thrun, F. Comprehensive Hetereocyclic Chemistry III; Katritzky, A. R., Taylor, R. J. K., Ramsden, C. A., Scriven, E. F. V., Eds.; Elsevier: 2008; Vol. 3, pp 553-561 and references cited therein.

The closely related $2,3$ -disubstituted benzo[b]furans have attracted extensive synthetic interest and also exhibit a broad range of biological activities.¹¹ Among synthetic strategies for benzo[b]furans, Pd-catalyzed cyclizations are particularly attractive, allowing for the simultaneous installation of a carbonyl substituent at C3, to give the 2,3 disubstituted systems.¹² Our approach would provide access to both 2-arylbenzo[b]furan and 2-aryl-2,3-dihydrobenzo- [b]furan-containing natural products and analogues. Key to its success was developing a method to reduce the benzo- [b]furan system to the corresponding *trans*-2,3-dihydrobenzo[b]furan. The retrosynthetic strategy (Scheme 1) highlights the concise and highly modular approach we proposed to access these compounds.

Scheme 1. Retrosynthetic Analysis of 2-Aryl-2,3-dihydobenzo- [b]furan-3-carboxylates (3)

We envisaged that dihydrobenzofuran 3 would be formed by stereoselective reduction of benzofuran 4, which would be derived from ortho-hydroxydiarylalkyne 5, using a carbonylative annulation reaction. Compound 5 would be derived from the Sonogashira coupling of protected aryl iodide 6 and arylalkyne 7. Initial investigations focused on developing this route, using aryl iodides (8, 9) and terminal alkynes (10-16). Subsequently, the utility of this method was demonstrated by the formal total synthesis of the anti-HIV natural product $(+)$ -lithospermic acid (1).

The diarylalkyne substrates were synthesized by Sonogashira coupling of aryl iodide 8^{13} with arylalkynes

(9) García-Muñoz, S.; Álvarez-Corral, M.; Jiménez-González, L.; López-Sánchez, C.; Rosales, A.; Muñoz-Dorado, M.; Rodríguez-García, I. Tetrahedron 2006, 62, 12182–90.

(10) Natori, Y.; Tsutsui, H.; Sato, N.; Nakamura, S.; Nambu, H.; Shiro, M.; Hashimoto, S. J. Org. Chem. 2009, 74, 4418–4421.

(11) For recent synthetic strategies, see: (a) Kao, C.-L.; Chern, J.-W. J. Org. Chem. 2002, 67, 6772–6787. (b) Cho, C.-H.; Neuenswander, B.; Lushington, G. H.; Larock, R. C. J. Comb. Chem. 2008, 10, 941–47. (c) Duan, S.-F.; Shen, G.; Zhang, Z.-B. Synthesis 2010, 15, 2547–52. (d) Bang, H. B.; Han, S. Y.; Choi, D. H.; Yang, D. M.; Hwang, J. W.; Lee, H. S.; Jun, J.-G. Synth. Commun. 2009, 39, 506–515. (e) Scammells, P. J.; Baker, S. P.; Beauglehole, A. R. Bioorg. Med. Chem. 1998, 6, 1517–1524. (12) For examples, see: (a) Kondo, Y.; Sakamoto, T.; Yamanaka, H.

Heterocycles 1989, 29, 1013–1016. (b) Lutjens, H.; Scammells, P. J. Tetrahedron Lett. 1998, 39, 6581–6584. (c) Nan, Y.; Miao, H.; Yang, Z. Org. Lett. 2000, 2, 297–299.

(13) Miao, H.; Yang, Z Org. Lett. 2000, 2, 1765–68.

(14) Alkynes 10, 13, and 16 were commercially available. All other alkynes were prepared from the corresponding aldehyde by the $Corey -$ Fuchs alkynylation procedure: Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 36, 3769–3772.

(15) See Supporting Information for the acetate protection of 2-iodoisovanillin, which was prepared according to: Markovich, K. M.; Tantishaiyakul, V.; Hamada, A.; Miller, D. D.; Romstedt, K. J.; Shams, G.; Shin, Y.; Fraundorfer, P. F.; Doyle, K.; Feller, D. R. J. Med. Chem. 1992, 35, 466-479.

 $10-14^{14}$ and aryl iodide 9^{15} with arylalkynes $14-16$ (Table 1). Traditional coupling conditions were well-suited for generating diarylalkynes 17a-e (Method A); however yields of 18b and 18c were improved by using the conditions of Andrus et al.¹⁶ (Method B). Deacetylation of 17a-e was hampered by a competing side reaction that produced unwanted protio-cyclized benzofurans, which lacked the carbomethoxy functionality at the 3-position. $Cs₂CO₃$ in MeOH-THF at 0 °C, afforded *ortho*-hydroxydiarylalkynes 19a-e in good yield with no appreciable protio-cyclization.

Table 1. Synthesis of ortho-Hydroxydiarylalkynes

 α ^a Method A. β Method B. α ^c The intermediate acetal was purified and then deacetylated using $Cs₂CO₃$ in MeOH-THF.

It was necessary, in the case of benzaldehydes 18a-c (Table 1), to protect the aldehyde functionality in preparation for the carbonylative annulation and subsequent reduction step. Thus, $18a - c$ were subjected to a onepot procedure that included protection of the aldehyde as a cyclic acetal, followed by in situ methanolysis of the acetate, to reveal the *ortho*-hydroxydiarylalkynes $20a - c$.

The carbonylative annulation conditions of $Kondo^{12a}$ and Scammells^{12b} were well-suited to our systems (Table 2). Applying these conditions to ortho-hydroxydiarylalkynes 19a-e and 20a-c, moderate to excellent benzofuran product yields were achieved for all but 20c (entry 8, Table 2). Reaction rates were enhanced by heating to 40 \degree C; yet, this had a detrimental effect on 22a-b yields, so these reactions were conducted at rt. Interestingly, a methyl acetal byproduct, resulting from trans-acetalization, was observed in the cases of 1,3-dioxane substrates $20a - c$.¹⁷

⁽¹⁶⁾ Andrus, M. B.; Lepore, S. D.; Turner, T. M. J. Am. Chem. Soc. 1997, 119, 12159–12169.

⁽¹⁷⁾ The methyl acetal counterparts could be separated by column chromatography or carried on as a mixture with the 1,3-dioxane to the subsequent step.

Table 2. Carbonylative Annulation and Mg-Mediated Benzofuran Reduction

"Isolated yield of the trans-isomer. "Determined by ¹H NMR of crude isolate. "Byproduct isolated, R^1 = cyclohex-2-enyl (6%). "Byproducts isolated, $R^1 = 1,2$ -dihydronaphthalen-2-yl (38%); $R^2 = 1,2,3,4$ -tetrahydronaphthalen-2-yl (24%). ^e Reduction byproduct isolated, $R^1 = 3,5$ -dimethoxycyclohexa-2,5-dienyl (15%). ^f Accompanied by 8% of the trans-acetalized benzofuran product, analogous to 22a where $R^3 = CH(OMe)_2$.
^g Acetal hydrolysis by aqueous workup led to the benzaldehyde ($R^3 = CHO$) directly $CH(OMe)_2$. Combined yield of *cis* and *trans.* Trans-acetalized material isolated, analogous to 20c where $R^3 = CH(OMe)_2$.

Synthetic methods for reducing 2-arylbenzo[b]furan-3-carboxylates to the corresponding 2-aryl-2,3-dihydrobenzo- $[b]$ furan-3-carboxylate are scarce. Juhász et al.^{18b} employed catalytic hydrogenation over Pd/C in methanol to reduce methyl 2-phenylbenzo[b]furan-3-carboxylate to the corresponding cis-2,3-dihydrobenzo[b]furan in 11% yield. While catalytic reduction of simpler benzofuran systems has provided *cis*-dihyrobenzofurans, $\frac{7}{1}$ to our knowlegdge, no methods for reducing 2,3-disubstituted benzo[b]furans to the trans-dihydrobenzofuran have been reported. Common reduction conditions (e.g., $H_2/Pd - C$,¹⁸ chiral "CuH",¹⁹ TFA/Et₃SiH²⁰) applied to more complex benzofurans of type 21 and 22 were not suitable for our systems: either recovered starting material or complex mixtures of products were obtained. Chemoselective reduction of α , β -unsaturated esters has been reported to proceed usingMg in MeOH, even in systems in which the double bond is part of an aromatic system.²¹ Our substrates provided a considerable challenge, requiring chemoselective reduction of a tetrasubstituted double bond within an aromatic system. Early attempts at the Mg-MeOH reduction proved low yielding and capricious, apparently due to low and variable activity of the Mg and the low solubility of our substrates in MeOH. Adding THF as a cosolvent alleviated solubility issues, but also resulted in markedly less active Mg. Attempts to activate the Mg surface by stirring vigorously (both neat and in solution), by adding of I_2 or 1,2-dibromoethane, or by prior treatment with a dilute acid all proved inadequate. The introduction of NH4Cl to the reaction mixture as an agent for Mg activation²² was crucial to obtaining reproducible results and, gratifyingly, enabled the use of THF as cosolvent without deleterious effects on reaction rate and yield. These conditions proved amenable to all the benzofuran substrates (Table 2) in our investigation. The reduction reactions initially proceed with some degree of diastereoselectivity for the cis-isomers, which then undergo magnesium methoxide promoted epimerization to the more thermodynamically stable *trans*-isomers, $23a-e$ and **24a**-b.²³ Partial reduction of the pendant R^1 aryl group competed with the desired 2,3-reduction in some substrates (Table 2, entries $1-2$, 4). However, these unwanted reductions could be minimized by lowering the reaction temperature from rt to -15 °C. To optimize yields of the trans diastereomer the reaction mixture was decanted from excess Mg when reduction was complete,

^{(18) (}a) Tamura, K.; Kato, Y.; Ishikawa, A.; Kato, Y.; Himori, M.; Yoshida, M.; Takashima, Y.; Suzuki, T.; Kawabe, Y.; Cynshi, O.; Kodama, T.; Niki, E.; Shimizu, M. J. Med. Chem. 2003, 46, 3083– 3093. (b) Juhasz, L.; Szilagyi, L.; Antus, S.; Visy, J.; Zsila, F.; Simonyi, M. Tetrahedron 2002, 58, 4261–4265.

^{(19) (}a) Hughes, G.; Kimura, M.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11253–11258. (b) Appella, D. H.; Moritani, Y.; Shintani, R.; Ferreira, E. M.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9473– 9474.

^{(20) (}a) Rupprecht, K. M.; Boger, J.; Hoogsteen, K.; Nachbar, R. B.; Springer, J. P. J. Org. Chem. 1991, 56, 6180–6188. (b) Lanzilotti, A. E.; Littell, R.; Fanshawe, W. J.; McKenzie, T. C.; Lovell, F. M. J. Org. Chem. 1979, 44, 4809–4813.

^{(21) (}a) Boyle, E. A.; Mangan, F. R.; Markwell, R. E.; Smith, S. A.; Thomson, M. J.; Ward, R. W.; Wyman, P. A. J. Med. Chem. 1986, 29, 894–898. (b) Youn, I. K.; Yon, G. H.; Pak, C. S. Tetrahedron Lett. 1986, 27, 2409–2410. (c) Lee, G. H.; Youn, I. K.; Choi, E. B.; Lee, H. K.; Yon, G. H.; Yang, H. C.; Pak, C. S. Curr. Org. Chem. 2004, 8, 1263–1287.

^{(22) (}a) Elder, A. M.; Rich, D. H. Org. Lett. 1999, 1, 1443–1446. (b) Leduc, A. B.; Kerr, M. A. Eur. J. Org. Chem. 2007, 237–240. (c) Okabe, K.; Natsume, M. Tetrahedron 1991, 47, 7615–7624.

⁽²³⁾ Notably, the J_{H2-H3} values were not a useful diagnostic tool for distinguishing the cis and trans isomers in these systems. Instead, the anisotropic effect of the C-2 aryl group causes chemical shifts of 3-CH and CO_2CH_3 which are diagnostic for *cis* versus *trans* isomers (refs 7, $\overline{9}$, and 18b). Thus, the *trans* compound displayed an upfield 3-CH resonance, compared to the cis isomer.

allowing the magnesium methoxide reaction mixture to warm to rt, whereupon epimerization to the predominantly trans-isomer resulted. The protected aldehyde in 22a–b was unmasked by aqueous acid workup to directly afford the aldehyde products 24a-b.

 $(+)$ -Lithospermic acid (1) was first isolated from Lithos*permum ruderale* in $1963²⁴$ and its structure elucidated in 1975.²⁵ (+)-Lithospermic acid (1) has also been isolated from Salvia miltiorrhiza (Danshen), a popular herb in traditional Chinese medicine,²⁶ and from many other sources.²⁷ It was not until 2002 that it was found to be a potent HIV integrase inhibitor.²⁸ Importantly, 1 was devoid of the collateral toxicity that plagued many other integrase inhibitors. Previous approaches to the synthesis of 1 include the HBr-promoted cyclization used by Raths and co-workers, resulting in the synthesis of racemic heptamethyl lithospermate,²⁹ and the C-H bond activation strategies used by Bergman, Ellman and co-workers, and also by Yu and co-workers for the first total syntheses of $(+)$ -lithospermic acid.³⁰

Sonogashira coupling of aryl iodide 9 and arylalkyne 25^{31} proceeded in 75% yield (Scheme 2). Sonogashira coupling, followed by protection of the aldehyde and removal of the acetate using Cs_2CO_3 in MeOH-THF, gave the ortho-hydroxydiarylalkyne 26. Subjecting 26 to carbonylative annulation generated the desired tetrasubstituted benzofuran 27 in good yield. The previously developed conditions proved well-suited for reducing 27 to give the desired 2,3-dihydrobenzo[b]furan 28 (81%, ca. 3:1 trans: cis), following an acidic workup to remove the cyclic acetal protecting group. Knovenagel condensation of aldehyde 28 with malonic acid, and concomitant epimerization at C-3, gave cinnamic acid 29 with improved dr (ca. 6:1 2,3-trans:2,3-cis), which was subsequently coupled with known alcohol 30^{30a} to afford

(24) Johnson, G.; Sunderwirth, S. G.; Gibian, H.; Coulter, A. W.; Gassner, F. X. Phytochemistry 1963, 2, 145–150.

(25) (a) Kelley, C. J.; Mahajan, J. R.; Brooks, L. C.; Neubert, L. A.; Breneman, W. R.; Carmack, M. J. Org. Chem. 1975, 40, 1804–1815. (b) Wagner, H.; Wittman, D.; Schaffer, W. Tetrahedron Lett. 1975, 16, 547–550.

(26) (a) Lu, Y.; Foo, L. Y. Phytochemistry 2002, 59, 117–140. (b) Jiang, R.-W.; Lau, K.-M.; Hon, P.-M.; Mak, T. C. W.; Woo, K.-S.; Fung, K.-P. Curr. Med. Chem. 2005, 12, 237–246. (c) Kang, H. S.; Chung, H. Y.; Jung, J. H.; Kang, S. S.; Choi, J. S. Arch. Pharm. Res. 1997, 20, 496–500.

(27) A small selection includes: (a) Lin, Y.-L.; Wang, C.-N.; Shiao, Y.-J.; Liu, T.-Y.; Wang, W.-Y. J. Chin. Chem. Soc. 2003, 50, 1079-1083. (b) Lin, Y.-L.; Chang, Y.-Y.; Kuo, Y.-H.; Shiao, M.-S. J. Nat. Prod. 2002, 65, 745–747. (c) Yamamoto, H.; Inoue, K.; Yazaki, K. Phytochemistry 2000, 53, 651–657. (d) Fukui, H.; Yazaki, K.; Tabata, M. Phytochemistry 1984, 23, 2398–2399.

(28) Abd-Elazem, I. S.; Chen, H. S.; Bates, R. B.; Huang, R. C. C. Antiviral Res. 2002, 55, 91–106.

(29) Jacobsen, R. M.; Raths, R. A. J. Org. Chem. 1979, 44, 4013– 4014.

(30) (a) O'Malley, S. J.; Tan, K. L.; Watzke, A.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2005, 127, 13496–13497. (b) Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 5767–5769.

(31) Pelter, A.; Ward, R. S.; Little, G. M. J. Chem. Soc., Perkin Trans. 1 1990, 2775–90.

 $(2S, 3S, 2'R)$ -31 and the corresponding $(2R, 3R, 2'R)$ -diastereomer. The diastereomeric pair was separable by HPLC, providing diasteromerically pure 31. All spectroscopic data obtained matched those reported by Bergman, Ellman and co-workers.30a

Scheme 2. Synthesis of $(+)$ -Heptamethyl Lithospermate (31)

The two-step conversion of 31 to 1, involving ester hydrolysis followed by global demethylation, has been reported,^{30a} and hence the synthesis of $(+)$ -heptamethyl lithospermate (31) presented here constitutes a formal total synthesis of $(+)$ -lithospermic acid (1) .

We have demonstrated a versatile, modular synthetic approach to 2-aryl-2,3-dihydrobenzo[b]furans via Mgmediated reduction of benzo[b]furans and demonstrated its use in natural product synthesis with a synthesis of $(+)$ -heptamethyl lithospermate (31) in 7 steps and in 8.4% overall yield from 9, constituting a formal total synthesis of the anti-HIV natural product $(+)$ -lithospermic acid (1).

Acknowledgment. We thank the Australian Research Council for funding (DP556187), the CSIRO for a scholarship to J.F., and Dr. Natasha Hungerford (Griffith University) for assisting in preparing of this manuscript.

Supporting Information Available. Experimental procedures, product characterization data, and ¹H and ¹³C NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.